AMEP students online: The view from morning self-access

TIM LEVER – The University of Sydney

ABSTRACT
A spot survey of computer use in open self-access was conducted at the Bankstown Adult Migrant English Program (AMEP) Centre as a way of exploring the changing information and technology environment of AMEP teaching and learning. The survey documents, from a local centre perspective, the growing role of the Internet in meeting technology and information needs among AMEP clients. It confirms that the Internet has become the primary focus of computer use among clients and that Internet skills have become a key skill need. The paper illustrates the forces behind the Internet’s growing impact through the case of a particular Web-based resource, the NSW online Driver Knowledge Test. The paper builds upon the broader investigation of AMEP Internet use conducted by Corbel and Taylor (2003) and critically examines their recommendation for the teaching of Internet skills to focus on particular high-value websites.

Introduction
The progressive infiltration of computer technology into teaching and learning brings new opportunities, new needs and new questions for which teachers and providers must prepare. While the questions are almost too obvious, the answers are not.

1 Which computer skills are most relevant? The question is no longer whether computer skills are going to be recognised and supported as part of language development, but which skills should be singled out. Options that may be considered include:

• text-production (typing and word-processing)
• home PC skills
• use of language learning software
• online communication (email, discussion boards, chat)
• online information seeking
• accessing Internet resources of specific interest (virtual ILC, grammar sites, TAFE, online dictionaries)
• sub-elements of the above or combinations of those sub-elements.

During the past decade of computer use in AMEP classrooms, teaching priorities have shifted considerably. An early focus on word-processing and keyboard skills in the 1990s was followed by a shift towards CD-based language software, and then, more recently, by a growing emphasis on Internet-based activities. The quick succession of technological fashions naturally raises questions as to the basis for these changes. If typing and word-processing were important in the 1990s, should they not be getting the same attention now? Can we expect the current trend towards Internet-based activity to be any more durable than those that came before?

2 What do we want the computer skills for? The choice of technology is inseparable from choices about underlying educational and social goals (Warschauer 2002). Goals that might possibly be nominated include:
• bridging the ‘digital divide’ – reducing disadvantages in computer access faced by people of non-English speaking backgrounds
• the development of computer literacy
• the development of electronic literacy
• motivation and support for language learning
• meeting settlement needs of newly arrived migrants
• access to employment and employment services
• access to further education
• social and educational empowerment.

[Sources: Warschauer 1999; Warschauer 2002; Corbel and Taylor 2003]

While we need ‘all of the above’, new technology comes with a certain risk of false hopes and inflated expectations – in education as in business (Cuban 2001). Teachers face a dilemma here between big picture goals with limited prospects in the short-term, and smaller, more achievable targets that offer quick results but relatively low value for the time invested.

‘Settlement needs’ are clearly important in the AMEP, which has the stated aim to ‘help newly-arrived migrants and refugees settle successfully in Australia’ (Department of Immigration, Multicultural and Indigenous Affairs 2004). AMEP ‘help’ includes information and advice in the first language as well as the provision of English classes. Computers, as an
information tool, may also be seen as part of the AMEP's settlement function. However, the degree of computer activity to be covered is far from clear. Student email access, for example, remains a subject of contention among AMEP teachers (Corbel and Taylor 2003: 37). It is difficult to manage rising expectations when essential computer needs cannot be distinguished from those that are more opportunistic.

3 **On what basis can these decisions be made?** What evidence do we have for choosing one particular skill focus over another, or one social/education goal over another, in the computer room? What frameworks are there for evaluating the various options available? The need to get a handle on the direction of new technology and its implications has inspired government inquiries, mass surveys and a growing body of theoretical writings on the new forms of electronic text and textual practice (Telecommunications and Information Infrastructure Assistance Program 1999; Warschauer 1999; Australian Flexible Learning Framework 2002; Muniandy 2002; Sutherland-Smith 2002). However, the broad agendas of such work do not automatically translate into the specific curriculum constraints of the AMEP.

Corbel and Taylor’s *Online for all?* (2003) focuses exclusively on the Internet rather than on computer technology as a whole, but within this frame provides a particularly thorough response to the question of the place of computers in the AMEP. On the issue of skills focus their response is clear and precise: the focus should be on teaching students ‘how to access Internet sites’ and on directing them ‘to suitable and useful content’. The teacher’s role is to provide students with a short cut to truly worthwhile Internet sites, and cutting out the ‘garbage dump’ of the Internet as a whole. Corbel and Taylor recommend an increased focus on ‘effective ESL sites’ and argue that students should also be exposed to a range of other types, including sites in L1, selected by the teacher. The proposed teaching–learning sequence starts with basic mouse and keyboard actions, progresses from work on single webpages to navigation of whole websites and then, finally, to autonomous selection of sites other than those given. Each step in the sequence is linked to a particular stage and phase of the Certificate in Spoken and Written English (CSWE) curriculum so that the progression of Internet proficiency runs in parallel with that of language (Corbel and Taylor 2003: 31–4, 39). As a guide for teaching practice, Corbel and Taylor’s prescription is detailed, well-thought out and completely feasible in an AMEP context. The main difficulty is the manner in which the prescription is arrived at. The suggested program of Internet skill development
appears to be based more on what students and teachers find interesting or profitable, rather than on any evidence of compelling need. The Internet sites canvassed clearly have value as objects of teaching and learning, but whether they are really necessary, as part of the AMEP learning experience, is another question again.

Teacher views, collected via surveys and focus groups, provide the main source for Corbel and Taylor’s teaching recommendations. Student survey data merely provide a general indication of what students like (email and first language websites) and what they want from their teachers (direction in finding good sites and learning how to use them). It is teachers who transform these general student preferences into a specific teaching prescription. The teacher evidence, however, comes with some unresolved questions regarding the ability of teachers to make decisions about teaching matters outside of their main area of professional training and experience – English language teaching. Corbel and Taylor warn that teachers’ choice of computer learning activities may be determined by the limited range of what they know how to teach, rather than any real understanding of what students are ready to learn (Corbel and Taylor 2003: 35).

Further doubts are raised by divergent teacher views on what constitutes ‘suitable’ Internet content for AMEP purposes. Email, for example, is rated as having low educational cost effectiveness by the majority of teachers surveyed in Corbel and Taylor (56%), but high cost effectiveness by a small minority (6%). To complicate matters further, Corbel and Taylor take a position somewhere between these two viewpoints, arguing that email indeed has an important place in Internet teaching, though not necessarily the top position (Corbel and Taylor 2003: 17, 37). Underlying the apparent good sense of basing Internet skill development on websites of particular value, there is considerable uncertainty as to which sites might actually be selected, and the durability of those chosen at any particular time. Contention over the designation of ‘suitable’ Internet content is a serious challenge for an Internet skills program that expects ‘suitable’ content to be given from the start.

The observational study reported here follows Corbel and Taylor’s lead in seeking clues to the technology needs and priorities of AMEP clients through an analysis of their computer usage preferences. However, the present study is narrower in scope as it is confined to a single AMEP centre. The key difference in this case is that computer usage is directly observed, rather than relayed second-hand from teachers and student surveys, and is seen against the background of a specific student cohort and a specific set of computer resources. Direct observation provides access to real student–
computer interaction under real-life conditions. The study documents what AMEP students actually do with computers when given free choice in the matter, rather than what teachers might lead them to do. It then documents those choices directly through an on-the-spot live record, rather than through the second-hand medium of student and teacher views and recollections. It is hoped that by these means a portrait of Internet use will evolve that is relatively true to life and embedded in meaningful context, unlike the more distant and abstract views available through traditional survey methods. The study takes as its observational arena the self-access computer sessions of a particular AMEP centre, with the aim of capturing student computer activity in a setting as close as possible to that of everyday practice in the outside community. In this way, the study brings the external information environment into the analysis of AMEP needs by focusing on the point of closest contact between the AMEP and external information practice as far as computers are concerned: open self-access sessions.

The local context

The Bankstown AMEP Centre, where I worked for at the time of the study as computer room support person, is part of the Southern Sydney region. The Bankstown client mix is predominantly female, Middle Eastern or East Asian in origin, and skewed towards the lower end of the language proficiency scale, with round 90 per cent in CSWE Stages 1 or 2. Education is limited, in the majority of cases, to primary or secondary level, and previous computer skills are basic to non-existent. In all of these aspects, Bankstown has much in common with other AMEP centres across south-western Sydney.

In terms of computer resources, at the time of the survey there were 21 student computers plus one teacher computer, all connected to the Internet via the intranet. Locally installed software included CALL favourites, such as Picture Dictionary, Issues in English and Click into English, among others, as well as Mavis Beacon Typing Tutor and Microsoft Office. The Bankstown student webpage gave students quick links to further CALL resources, such as aclEnglish and the Virtual ILC, plus a wide range of other resources related to learning and settlement needs: search engines, email, online dictionaries, international news sources, government agencies, TAFE, class webpages and centre announcements. Skills in using these resources were taught in computer room lessons given to students at least once a week as part of their normal program.

The self-access context

Self-access sessions at Bankstown were a voluntary supplement to normal computer-based lessons, not a replacement for them. The sessions provided
at Bankstown were of the type that Robb (2002) describes as ‘true self-access’, open and unstructured, with students using the available resources more or less as they pleased and teacher assistance given only where specifically requested. While other more structured forms of self-access were theoretically possible, they were insignificant in practice for reasons that lie outside the scope of this paper. Class projects involving computer self-access time were undertaken with higher level students on a very occasional basis, but this was not a factor at the time of the study. Compulsory self-access tasks had no role at lower levels.

From an educational point of view, the kind of open self-access seen in the Bankstown computer room is a natural target for scepticism (Jones 2002; Robb 2002). In the AMEP context, open access to computers is an optional extra rather than a standard service, with provision depending on the policies and possibilities of the individual provider. In the Bankstown case, self-access was supported on the basis that there was a significant need for computer practice opportunities and little to lose in making times available if computers were not required for other purposes, even though the exact nature of the need for computer practice was difficult to quantify. Bankstown was fortunate in having substantial blocks of unused computer time that could be assigned to open self-access, though other centres would not necessarily be in the same position. The total self-access time available varied between 11 and 14 hours per week depending, mainly, on my own availability to supervise during the afternoon. As computer room support person I was in attendance during all self-access sessions, though I usually had other duties to manage at the same time.

There were three main self-access blocks stretching across the week’s timetable. The first was during morning break from 11 to 11.20 am, the second was in the afternoon following the end of classes at 1 pm, and the third was from 5 to 6 pm on Monday and Tuesdays before the start of the evening session. Computer room lessons for day classes were scheduled in two 90-minute blocks each day: one before the morning break and the other at 1 pm (when the next self-access session began). Every computer room lesson was thus followed by a self-access session immediately afterwards, whether in the morning or afternoon. This timetabling arrangement made an easy transition from lesson mode to self-access for students who wished to extend their computer activity – though it did not necessarily extend the lesson itself.

The main reason for the coupling of self-access sessions and computer lessons was not to do with the lessons themselves, however, but was a response to the pressure of numbers and the danger that less confident
students would be squeezed out of self-access by more proficient and assertive users. In other words, it was about equal opportunity. As every class had at least one computer room lesson per week, there was a guaranteed self-access place for every student every week regardless of the queues at the door. The teaching block immediately before the morning self-access session was reserved for lower level classes, which gave them a slight edge in the first self-access session of the day where competition for places was most intense. This was done out of consideration for their disadvantage in terms of computer skills and language confidence. The proportion of lower level students in the morning session was relatively high (30% or more), though in the afternoon session their numbers were lower.

However, this strong commitment by Bankstown to open self-access and to the participation of lower level students may not make it particularly representative of AMEP centres at large. Levels of computer access vary widely across AMEP providers, and what access there is tends to be dominated by students from upper CSWE levels (Corbel and Taylor 2003: 7, 20–3). While the Bankstown Centre may be out of the ordinary in its conditions of computer use, its clients are closer to the AMEP norm in the key factors liable to affect their usage: language proficiency and general education. What could be seen at Bankstown was not a typical computer room but, rather, typical AMEP students under conditions which enabled their computer use to be observed in a relatively pure state, that is, removed from direct teacher influence. For this purpose, the Bankstown self-access sessions are an ideal viewing platform. With unrestricted Internet service, the ‘external’ information environment becomes fully available inside the AMEP centre itself. With open self-access, we stand as far as possible outside the formal framework of the AMEP curriculum, while still being in an AMEP centre. We can be ‘in’ the external information environment without leaving the premises, and have our own mini-observatory of social and technological change spontaneously created in the midst of a busy AMEP centre.

Method

The observational method used could be described as a ‘spot survey’, which was conducted at a regular time and roughly regular intervals over a series of weeks. With a quick scan of each computer row, the software on screen was recorded on a classroom sketch map, the contents of which were transferred at the first available opportunity into an Excel spreadsheet for the calculation of totals and percentages.

Computer usage was classified under 14 different types. These types
were defined on the basis of initial observation in a way that allowed easy identification of key usage features, such as language medium (English or L1), technological medium (Web or local network) and functional orientation (educational or non-educational). The 14 categories were:

1. email in L1
2. email in English
3. online music in L1
4. online music in English
5. news in L1
6. news in English
7. Driver Knowledge Test in L1
8. Driver Knowledge Test in English
9. language learning application – Web-based
10. other Web material in L1
11. other Web material in English
12. language learning application – locally installed
13. typing tutor
14. other locally installed applications (such as Microsoft Word).

Two of these categories, ‘news in English’ and ‘other locally installed applications’, were purely hypothetical options in this case. Neither was encountered in the sessions under observation, though both were seen on other occasions. The range of selections to be noted was thus, in practice, reduced to 12. The task of the observer was further simplified by the fact that the 12 options boiled down to a smaller number of basic choices with sub-variants – English or non-English, Web-based or locally installed. This ensured a manageable cognitive load and made consistency of classification easy to maintain.

The time chosen for the spot survey was the morning break, which began at 11 am. By timing the survey at the earliest possible moment in the day, I hoped to maximise my chances of getting it completed before becoming absorbed in other tasks. The survey was conducted over a seven-week period during April and May 2003, though not without some difficulty. Crowded working days, bustling self-access sessions and sometimes unpredictable connections and equipment meant that it was not possible to cover every
single day. On some days, the observation was delayed until the last five minutes of the morning session when seats were beginning to empty. Within these constraints reasonable coverage was nevertheless achieved.

The morning-break focus obviously comes with some risk in terms of the representation of self-access time as a whole. Some activities, email for example or first language news, might possibly have a greater tendency to be pursued first thing in the morning or under constrained time conditions. Other features specific to the morning session include high demand and competition for places, because it is a more convenient time for a wider range of students not just those who can afford to stay on in the afternoon. The morning break is not the only time available for self-access, but it is the moment of greatest intensity, readiness to participate and pressure to prioritise as far as the use of time is concerned. It is a good opportunity to see how computer needs are prioritised under pressure, although one does miss out on observing what happens at more leisurely moments.

Morning self-access sessions were surveyed on 19 of the 27 available teaching days. During those 19 days, a total of 372 individual usage instances were captured. These instances represent 89 per cent of those theoretically possible (22 computers over 19 days), and close to 100 per cent of the realistic possibilities, given that technical problems occasionally made some workstations unavailable for inclusion. The 372 instances were sufficient to give a useful statistical indication of the prevailing usage pattern, with a confidence level of 95 per cent and margin of error just under 5 per cent.

Without a point of comparison, it is hard to say how significant the impact might be, if at all, of the choice of morning break as the time of observation. Although this will, of course, need to be taken into account when considering the final results, what data exist in Corbel and Taylor do not suggest it to be a serious problem. Student free-time computer usage across the AMEP is dominated by precisely the type of ‘quick snack’ activities that the morning break might be expected to favour: email, first language news and Internet searches (Corbel and Taylor 2003: 8). Either student computer usage as a whole has the same bias as at morning break, or there is no significant bias at all. In both cases, there does not seem much cause for concern.

Findings

Overall, the strongest trend shown by the morning self-access spot survey is an overwhelming preference for Internet-based applications (90% of usage) over those running from the local network. Within the Internet group of applications, the bulk of activity is accounted for by two single applications:
email (33% of total usage) and the Online Demonstration Driver Knowledge Test or DKT (Roads and Traffic Authority, NSW 2004) (27%). Non-English news from the Internet (10.5%), and language learning on local network and Internet combined (11.8%), are next in order of significance but well behind the two leaders.

Other tendencies clearly in evidence are a preference for languages other than English as the language medium (71%), and a relatively low interest in applications specifically concerned with learning (39%). The bulk of the ‘learning’ type usage is accounted for by the online Driver Knowledge Test, rather than by English language learning or anything with a standard educational focus. Without the Driver Knowledge Test, the ‘learning’ category sinks to a very modest 12.1% of total usage.

The survey also shows a high level of utilisation for computer resources as a whole during the self-access sessions. The 372 recorded instances represent a computer room running at close to full capacity when the varying functionality of machines and opportunities for survey completion are taken into account. A detailed breakdown of the usage figures is provided in Table 1 while general trends are summarised in Figure 1.

Table 1: Software usage – detailed breakdown

<table>
<thead>
<tr>
<th>Type of computer use</th>
<th>Functional orientation</th>
<th>No. of usage instances</th>
<th>Proportion of usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web-based</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email – non-English</td>
<td>Communication</td>
<td>104</td>
<td>28.0%</td>
</tr>
<tr>
<td>Email – English</td>
<td>Communication</td>
<td>20</td>
<td>5.4%</td>
</tr>
<tr>
<td>Music – non-English</td>
<td>Entertainment</td>
<td>6</td>
<td>1.6%</td>
</tr>
<tr>
<td>Music – English</td>
<td>Entertainment</td>
<td>5</td>
<td>1.3%</td>
</tr>
<tr>
<td>News – non-English</td>
<td>Information</td>
<td>39</td>
<td>10.5%</td>
</tr>
<tr>
<td>Driver Knowledge Test</td>
<td>Learning</td>
<td>86</td>
<td>23.1%</td>
</tr>
<tr>
<td>– non-English</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Driver Knowledge Test – English</td>
<td>Learning</td>
<td>15</td>
<td>4.0%</td>
</tr>
<tr>
<td>Language learning – Web-based</td>
<td>Learning</td>
<td>9</td>
<td>2.4%</td>
</tr>
<tr>
<td>Other Web – non-English</td>
<td>Mixed</td>
<td>30</td>
<td>8.1%</td>
</tr>
<tr>
<td>Other Web – English</td>
<td>Mixed</td>
<td>22</td>
<td>5.9%</td>
</tr>
<tr>
<td>Local</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language learning – local software</td>
<td>Learning</td>
<td>35</td>
<td>9.4%</td>
</tr>
<tr>
<td>Typing tutor</td>
<td>Learning</td>
<td>1</td>
<td>0.3%</td>
</tr>
<tr>
<td>All usage</td>
<td></td>
<td>372</td>
<td>100%</td>
</tr>
</tbody>
</table>
Figure 1: Software usage – general trends

Discussion

These findings add a certain amount of detail to what was previously known about self-access computer use. For although Corbel and Taylor provided a list of the three top Internet choices – email, first language news and search engines (Corbel and Taylor 2003: 8) – there were no quantitative indicators for these. The Bankstown findings cover all computer use, not just Internet use, and provide a quantitative breakdown which clearly shows where students’ priorities lie in the computer domain.

However, one limitation of this study is that, as noted above, it focuses on morning self-access alone without any coverage of later sessions. Another limiting factor is that the student level is also missing. Although it was informally observed that CSWE 1 students made up at least 30 per cent of numbers on most mornings, their impact on the types of computer use remains uncertain. This is unfortunate, since the student level might have helped explain some of the differences between the Bankstown results and those of Corbel and Taylor, where CSWE 1 was poorly represented. Within these constraints, however, a certain amount of sense can be made of the differences and similarities between the Bankstown findings and previous studies.

A series of parallels between the Corbel and Taylor list and the two sets of results from this study suggest a common pattern shared by both sets of users. The common points are: (1) email as the most usual form of personal computer use; (2) more use of first language than of English; (3) first language news as a significant motivator of Internet use; and (4) limited use of educational software. Further traces of this pattern can be found in Australian Broadcasting Authority data showing email to be by far the most frequent form of Internet use in Australian homes generally, and news from country of origin to rate as a high priority for migrants (Aisbett 2001: 27–30). However,
there were also two points of difference between the findings from the
Bankstown morning sessions and those from Corbel and Taylor’s study: at
Bankstown the ‘search engines’ did not have heavy usage, but access to the
Driver Knowledge Test was high. The absence of the driver test from Corbel
and Taylor’s data is easy to explain: the online test is local to New South Wales
and possibly did not exist when Corbel and Taylor were conducting their
research. Corbel and Taylor’s data seems to have been collected before 2003
(year of publication) and comes from all mainland states and territories. Thus,
this is not a significant divergence. However, the reason for the lighter usage
of search engines at Bankstown is less clear: it may have something to do with
the higher proportion of students at lower language proficiency, or it might be
a consequence of crowding out by the popular driver test. With the exception
of this unresolved difference, there is a high level of consistency between the
two sets of findings which suggest a fair degree of reliability in these studies as
trend indicators for the AMEP as a whole.

Apart from replicating previous findings, the Bankstown results also
throw some new light on computer usage patterns. The first is the possibility
of comparing Internet and non-Internet-based activity, and thereby clarifying
the Internet’s overall position in the technology environment. A second area
of insight is the demonstration provided by the Driver Knowledge Test of the
specific nature of the Internet’s power and the challenges it poses for AMEP
teaching. The test will be discussed in the first instance, before returning to
the broader Internet issue.

THE DRIVER TEST

The Driver Knowledge Test, also known as Online Demonstration Driver
Knowledge Test or DKT (2004), is run from the NSW Roads and Traffic
Authority website. The second most frequently chosen application in the
spot survey findings, it accounted for more than a quarter of the individual
computer sessions recorded. The test is available in the main community
languages, and the bulk, but not all, of its use is in languages other than
English. The attraction of the test is such that the level of use would remain
significant even if there had had been no community language versions,
only the English one. The online test, like email, is hugely popular, more
through peer influence than classroom usage. Access to it involves an annoy-
ing maze of hyperlinks and fine print but it requires no registration, which
puts it ahead of email in terms of accessibility. The access routine takes a
minute to demonstrate (when the connection is good) and a couple of extra
minutes to memorise. Once inside, students can remain absorbed there for
hours on end, if so permitted.
The motivational capacity of the DKT is extraordinarily powerful, but troubling from an educational point of view. It is a risky item for any computer class, since it is liable to take control of the class from the moment it is introduced. A further problem is the kind of activity that the test encourages students to engage in. The activity it provides is nothing more than rote memorisation of the L1 version of the NSW road rules accompanied by periodic clicks on big grey multiple-choice buttons. It is bottom of the scale in terms of cognitive involvement, not to mention language and computer skills. The most challenging aspect of the site is simply getting there in the first place; once inside there is only mind-numbing repetition. The more creative students enliven their sessions by trying to make the test do things for which it was not designed, such as the printing of answers. For lower level students, the test provides a site that they can access with little knowledge of either computers or the English language, and then leave again at more or less the same level.

While unfit for most classroom use, the DKT was a star attraction when it came to self-access, and for very solid reasons. The popularity of the test, like that of email, was underpinned by a close connection with the everyday social needs of the adult migrant student. The underlying need for the test was, if anything, more compelling than that of email itself. While email enables access to something that adult migrants already have to a large degree – relationships with family and friends – the DKT enables access to something that newly arrived migrants do not have and need to acquire as quickly as possible in places like Bankstown: use of the road system. While email is to some extent replaceable as only one among a number of available communication options, the online DKT, on the other hand, is not easily replaceable in its function of preparing for the real drivers’ test. Thus, it may claim a kind of essential status as an information resource. It is one that users could not give up without experiencing a substantial deprivation in terms of their life and prospects as newly arrived settlers in a car-dependent Australian city.

The sense of social necessity embodied in the online DKT extends beyond the test itself into the medium of delivery, the Internet. If access to the test is essential for students, then access to the medium of delivery could also be considered essential. The online test example could be seen as marking a critical threshold in the development of the Internet as an information medium: the point where it passes from being a useful source of information in the AMEP context to being a vital one. Or is this too much to read into one single example?

The objection might be made that the test example shows nothing
more than student eagerness to get a driver’s licence, and that the technology employed has no particular significance since the product would have been bound to succeed in any medium given the strong interest in learning to drive. It might have worked just as well had it been a CD or even a print-based kit. However, if technology is truly irrelevant and students’ desire to drive is the beginning and end of the matter, it seems odd that no comparable package had previously emerged, and that the strength of student interest only became clear when an Internet-based product started catering to it.

THE POWER OF THE INTERNET
The success of the Internet in reaching the status of essential information source must be understood in the context of the structural advantage it has as a medium where more types of information can be manipulated in more ways and in larger quantities than anywhere else. This advantage means that the Internet has a greater chance of attracting new information, new products, new information seekers and information queries (Lessig 2001). The Internet is a natural magnet progressively drawing larger and larger pieces of the information environment to itself. The success of the online DKT as an Internet-based application is not an isolated incident, but another expression of the Internet’s unique capacity for generating applications, the value of which seems perfectly obvious after the event but totally unforeseen until then. The online test was not the only popular Internet-based resource, but simply one of the more popular. It was part of a wave, the collective power of which is evident in the aggregate Internet activity of the Bankstown self-access sessions.

The most important message to emerge from the spot survey concerns the powerful influence of the Internet on the information context of the AMEP centre and its students. The Bankstown computer room became the scene of a direct contest between: (a) classic computer resources (CD-based) on the local network; (b) new computer resources delivered over the Internet; and (c) non-computer resources (print, audio and video) in the library. In the computer area, Internet-based resources have won a crushing victory with 90 per cent of total computer activity. In the library next door, meanwhile, open self-access users came in singly or in pairs at most.

The reason for the dominance of the Internet is certainly not its user-friendliness; it is a source of constant complaint from frustrated student users (Sutherland-Smith 2002: 64). Nor does the reason lie in any special excitement, love or fascination for the technology, though attraction of this sort is a common hypothesis of discussion on educational technology issues.
(Vogel 2001: 134-6). If students had had any special love or fascination for the technology, they would have spent a little more time exploring it, instead of fixating on one or two of its minor applications. It was not the Internet, as such, that students ‘loved’, but a couple of useful services that happened to be there: email and the online DKT. The learner drivers on the ‘information superhighway’ wanted to drive cars – not computers – and had veered into the Internet traffic lane only as a short cut to their vehicle licence.

Students’ use of the Internet is, in fact, driven by the same sort of structural necessity as the urge to drive itself. Most people want to drive, not because of the intrinsic pleasure of petrol technology, but because of the mobility and flexibility that access to the road network brings to their lives. The Internet exerts precisely the same powerful attraction: an open-ended network ready to take people wherever they want to go. There is, of course, still a significant gap between the electronic highway and its asphalt equivalent in terms of student appreciation of what the former can offer. But students’ lack of understanding of electronic networks does not prevent them venturing there. The power of the new electronic ‘matrix’ is such that users can be drawn into it before they even know where are.

Conclusion

The findings here point to two main conclusions concerning the direction of computer use in the AMEP. The first is relatively straightforward: that Corbel and Taylor’s tacit assumption that current computer needs centre on the Internet is fully justified. An overwhelming proportion of student computer use depends in some way on the Internet. This dependence is not a question of personal preference on the part of students, but of necessity due to the increasing presence of the Internet in everyday information needs. The second conclusion concerns, on the one hand, the way priorities might be focused within the domain of the Internet itself and, on the other, Corbel and Taylor’s skill focus on helping students to access ‘useful and desirable’ information on specific sites. Here the conclusion is double edged. The high concentration of activity in a few select sites suggests that students are less interested in the Internet as a whole than in specific content items. In this sense, Corbel and Taylor’s recommendation that Internet lessons should be targeted more to specific sites than towards the Internet at large is very much vindicated. When students say that they want ‘Internet skills’, we may legitimately assume in many cases that they really mean skills for particular Internet sites. The assumption that teachers can manage the choice of site on their students’ behalf is not supported, however.
The DKT site provides a fine example of why choice cannot be removed from the student domain, even at the lowest levels. The test site is first of all one where the outcome is hard to predict in advance; suitability and unsuitability are inextricably mixed. The test is the gateway to a highly valued commodity, a driver’s licence, and also to hours of low-grade mechanical repetition. It is both a serious information tool and a cheap computer game. It may be useful to some users some of the time, and damaging at other times. No teacher is in a position to say precisely when or to whom; the choice is something that users must decide for themselves. Secondly, the test demonstrates the ease with which complex choices are encountered on the Internet. It takes no special skill or computer prowess for a student to find themselves right in the middle of the driver test dilemma – just a tip-off from a classmate about the test’s existence and a quick walk through the linking Road Traffic Authority pages. It is as accessible at CSWE I as at CSWE III.

Finally, the DKT presents a very ‘adult’ kind of choice, one linked to a key marker of adult status: the driver’s licence. It is the kind of choice that cannot be taken away from mature learners without, in some degree, negating their adult role. In an adult learning environment, this type of choice would ideally be engaged at a reasonably early stage in the curriculum cycle, rather than only later as a special privilege for those who last the full distance.

The online Driver Knowledge Test example indicates a need, perhaps, for a greater emphasis on skills of information seeking, not just accessing information on prescribed sites. However, this is a tentative indication underpinned by a very limited illustration of Internet capabilities and a certain amount of speculative logic: a hint rather than a definitive proposition. It would certainly be useful to have further information on what teachers are managing to do in terms of developing these skills, and also on what students are doing for themselves.

ACKNOWLEDGMENT
The data in this paper are used with the permission of acl, Sydney. The paper could not have been completed without the generous cooperation of acl students, staff and management. I take this opportunity to thank acl for the support it has extended to me as a former acl teacher during the long gestation of this paper.
REFERENCES

